
Interpolation Search in R

Rahul Goswami

2022-01-18

Interpolation Search is a searching algorithm that is used to find an element in a sorted array. The basic idea
of interpolation search is to search for an element in a sorted array by linearly interpolating between the
elements.
The average case time complexity of interpolation search is O(log n)
The worst case time complexity of interpolation search is O(n)
The best case time complexity of interpolation search is O(log n) (if the array is already sorted)
The space complexity of interpolation search is O(1) (in-place)

Algorithm: (For more details, refer to the book “Algorithms” by Robert Sedgewick and Kevin
Wayne)

1. Find the index of the element to be searched (i.e. the index of the element in the array that is just
greater than the element to be searched)

2. If the element to be searched is less than the element at the index, search the first half of the array

3. If the element to be searched is greater than the element at the index, search the second half of the
array

4. If the element to be searched is equal to the element at the index, return the index
@param vec Vector to be searched @param element Element to be searched @return Index of the
element

interpolation.search <- function(vec, element){
Find the index of the element to be searched
index <- floor(length(vec)*(element-vec[1])/(vec[length(vec)]-vec[1]))+1
cat("index: ", index)
If the element to be searched is less than the element at the index, search the first half of the array
if(vec[index] > element){

return(interpolation.search(vec[1:index], element))
}
If the element to be searched is greater than the element at the index, search the second half of the array
if(vec[index] < element){

return(index + interpolation.search(vec[(index+1):length(vec)], element))
}
If the element to be searched is equal to the element at the index, return the index
return(index)

}

Example

sorted_vec <- c(1,2,3,3,3,4,5,6,7,8,9)
interpolation.search(sorted_vec, 5)

1

index: 6index: 1

[1] 7

2

	Algorithm: (For more details, refer to the book ``Algorithms'' by Robert Sedgewick and Kevin Wayne)
	Example

