

1

UNDER

SUPERVISION OF

Dr. Mahaveer Singh Panwar

Department of Statistics

BHU

SUBMITTED BY

RAHUL GOSWAMI

MSC . Statistics and Computing

Roll No. 18419STC019

Enrollment No . 404655

DST-CIMS

Institute of Science ,BHU

I want to thank MAHADEV for everything

It gives me immense pleasure to express my gratitude, gratefulness and

indebtedness to reverend teacher and supervisor Dr. Mahaveer Singh Panwar

,Department of Statistics, Banaras Hindu University for his untiring help, constant

encouragement, worthy supervision without which it would not have been

possible for me to complete this project work. The guidance and valuable

criticism that I received from him, during the entire period of the work, has been

a great help in the completion of this work.

I acknowledge with my regard and sincere thanks to all the developers of Julia ,

Sanddance and ggplot .

This was the first time when I got this opportunity to experience to work on

Algorithms from scratch of Machine Learning & hence I feel it, as an achievement

of my life.

⬧

ACKNOWLEDGEMENT

This is to certify that RAHUL GOSWAMI student of DST-

CIMS, Banaras Hindu University , enrollment number

404655, have completed the project entitled “Credit Card

Fraud Detection Using Random Forest” , conducted under

the guidance and supervision of Dr. Mahaveer Singh

Parmar, Department of Statistics, Banaras Hindu University

DATE:

Dr. MAHAVEER SINGH PANWAR

DEPARTMENT OF STATISTICS

Banaras Hindu University

Credit Card Fraud Detection

Contents
Introduction 2

Technology 2
Julia . 2
Sanddance . 3
ggplot2 . 3

Data 3

Procedure 5
Algorithm . 5

Objective 5

Performance Measures 6
Accuracy Paradox . 6

Data Preprocessing 6
Missing Value Ration . 7
Why not Heat Map and Scaling . 8

Code 8
Functions . 8
Execution . 12
Visualization . 19

Sanddance . 19
ggplot2 . 20

Intuition . 21
Let us check Accuracy Paradox . 22

Conclusion & Result 23

1

Introduction
Nowadays, Machine Learning algorithms are used everywhere to predict, those which we
cannot see with our bared eye, it is true that humans have extraordinary reasoning skill, but
in computing we somehow lag machines. Today data is everywhere, and these data leads
to learning process, reasoned by human brains which leads exceptional result that we have
not accepted. There are a lot of Machine Learning techniques, but the one we are going to
use here is Random Forest, we are going to explore basic random forest and deduct some
conclusion for the estimation of hyperparameters.

Technology
We are going to use Julia as a programming language to write the code for random forest
from scratch and we are using microsoft’s sanddance and ggplot2 from R as a visualization
tool.

Julia
Julia is a latest programming , language developed at MIT. It mainly focuses on Data
Science.We are using this language because it is easy to use in multithreadining which is
quite helpful in running such a high level of code which breaks computational barrier of code
on simple home Pc or laptops . However Julia is still in progress and most of the packages
are not developed that is why we are writing our code from scratch with a little bit help
from basic packages such as.

• DataFrames : To handle DataFrames
• CSV : To import CSV file
• Random : To generate Random number

To get using this package we must include following code
using Pkg

#Pkg.add("Random");
#Pkg.add("CSV");

2

https://julialang.org/
https://www.microsoft.com/en-us/research/project/sanddance/
https://ggplot2.tidyverse.org/
https://juliadata.github.io/DataFrames.jl/stable/man/getting_started/
https://juliadata.github.io/CSV.jl/v0.1.1/
https://docs.julialang.org/en/v1/stdlib/Random/

#Pkg.add("DataFrames");

using Random
using CSV
using DataFrames

Sanddance
Sandance is webbased opensource application , can be used in Visual Studio Code , Developed
by Visualization and Interactive Data Analysis Team (VIDA) in Microsoft Research to ease
in Visulization. It have diiferent plotting options , and mainly ised with Graphical Interface
, there is not any CLI interface for it. While it is easy to use and have a decent learning
Curve.

ggplot2
ggplot2 is one of the most advanced visualizing package in R . It is quite popular in data
scientist and it is being used in most of the places from enterprises to academics.ggplot2 is a
system for declaratively creating graphics, based on The Grammar of Graphics book written
by Leland Wilkinson.from the ggplot2 github it is described as

ggplot2 is now over 10 years old and is used by hundreds of thousands of peo-
ple to make millions of plots. That means, by-and-large, ggplot2 itself changes
relatively little. When we do make changes, they will be generally to add new
functions or arguments rather than changing the behaviour of existing functions,
and if we do make changes to existing behaviour we will do them for compelling
reasons.

Data
The data we are going to use is a credit card data, fetched from Kaggle, the link for the data
is https://www.kaggle.com/mlg-ulb/creditcardfraud/download, It contains transaction
made by credit card holders of Europe for two days . It has 492 frauds out of 284,807
transactions. Dataset is highly unbalanced. It contains 31 Columns.

• Class: It’s a binary flag 1 if transaction is fraudulent and 0 if not
• Time : Time elapsed between transaction
• Amount: Amount of transactions
• V1-V28: PCA output, not explained due to confidentiality

Now let us take a look at our dataset.
data = CSV.read("creditcard.csv");
first(data,10)

10×31 DataFrame. Omitted printing of 25 columns

3

https://www.kaggle.com/mlg-ulb/creditcardfraud/download

� Row � Class � Time � V1 � V2 � V3 � V4 �
� � Int64 � Float64 � Float64 � Float64 � Float64 � Float64 �
��
� 1 � 0 � 0.0 � -1.35981 � -0.0727812 � 2.53635 � 1.37816 �
� 2 � 0 � 0.0 � 1.19186 � 0.266151 � 0.16648 � 0.448154 �
� 3 � 0 � 1.0 � -1.35835 � -1.34016 � 1.77321 � 0.37978 �
� 4 � 0 � 1.0 � -0.966272 � -0.185226 � 1.79299 � -0.863291 �
� 5 � 0 � 2.0 � -1.15823 � 0.877737 � 1.54872 � 0.403034 �
� 6 � 0 � 2.0 � -0.425966 � 0.960523 � 1.14111 � -0.168252 �
� 7 � 0 � 4.0 � 1.22966 � 0.141004 � 0.0453708 � 1.20261 �
� 8 � 0 � 7.0 � -0.644269 � 1.41796 � 1.07438 � -0.492199 �
� 9 � 0 � 7.0 � -0.894286 � 0.286157 � -0.113192 � -0.271526 �
� 10 � 0 � 9.0 � -0.338262 � 1.11959 � 1.04437 � -0.222187 �

Now to know about our dataset more we will use describe() function from the DataFrames
Package.
show(describe(data),allrows = true)

31×8 DataFrame. Omitted printing of 2 columns
� Row � variable � mean � min � median � max � nunique �
� � Symbol � Float64 � Real � Float64 � Real � Nothing �
���
� 1 � Class � 0.00172749 � 0 � 0.0 � 1 � �
� 2 � Time � 94813.9 � 0.0 � 84692.0 � 172792.0 � �
� 3 � V1 � 1.7587e-12 � -56.4075 � 0.0181088 � 2.45493 � �
� 4 � V2 � -8.2523e-13 � -72.7157 � 0.0654856 � 22.0577 � �
� 5 � V3 � -9.63744e-13 � -48.3256 � 0.179846 � 9.38256 � �
� 6 � V4 � 8.31623e-13 � -5.68317 � -0.0198465 � 16.8753 � �
� 7 � V5 � 1.59201e-13 � -113.743 � -0.0543358 � 34.8017 � �
� 8 � V6 � 4.24731e-13 � -26.1605 � -0.274187 � 73.3016 � �
� 9 � V7 � -3.05018e-13 � -43.5572 � 0.0401031 � 120.589 � �
� 10 � V8 � 8.69288e-14 � -73.2167 � 0.022358 � 20.0072 � �
� 11 � V9 � -1.17971e-12 � -13.4341 � -0.0514287 � 15.595 � �
� 12 � V10 � 7.09492e-13 � -24.5883 � -0.0929174 � 23.7451 � �
� 13 � V11 � 1.87502e-12 � -4.79747 � -0.0327574 � 12.0189 � �
� 14 � V12 � 1.05351e-12 � -18.6837 � 0.140033 � 7.84839 � �
� 15 � V13 � 7.13757e-13 � -5.79188 � -0.0135681 � 7.12688 � �
� 16 � V14 � -1.49137e-13 � -19.2143 � 0.0506013 � 10.5268 � �
� 17 � V15 � -5.22595e-13 � -4.49894 � 0.0480715 � 8.87774 � �
� 18 � V16 � -2.28069e-13 � -14.1299 � 0.0664133 � 17.3151 � �
� 19 � V17 � -6.42845e-13 � -25.1628 � -0.0656758 � 9.25353 � �
� 20 � V18 � 4.959e-13 � -9.49875 � -0.00363631 � 5.04107 � �
� 21 � V19 � 7.06069e-13 � -7.21353 � 0.00373482 � 5.59197 � �
� 22 � V20 � 1.76604e-12 � -54.4977 � -0.0624811 � 39.4209 � �
� 23 � V21 � -3.40654e-13 � -34.8304 � -0.0294502 � 27.2028 � �

4

� 24 � V22 � -5.71336e-13 � -10.9331 � 0.00678194 � 10.5031 � �
� 25 � V23 � -9.72529e-13 � -44.8077 � -0.0111929 � 22.5284 � �
� 26 � V24 � 1.46414e-12 � -2.83663 � 0.0409761 � 4.58455 � �
� 27 � V25 � -6.98909e-13 � -10.2954 � 0.0165935 � 7.51959 � �
� 28 � V26 � -5.61525e-13 � -2.60455 � -0.0521391 � 3.51735 � �
� 29 � V27 � 3.33211e-12 � -22.5657 � 0.00134215 � 31.6122 � �
� 30 � V28 � -3.51888e-12 � -15.4301 � 0.0112438 � 33.8478 � �
� 31 � Amount � 88.3496 � 0.0 � 22.0 � 25691.2 � �

Procedure
We are goona train a random forest for credit card fraud detection , such that the model
can predict the a given transaction is fraudulent or not. We are going to use one of the
methodology given by Shiyang Xuan and others at https://ieeexplore.ieee.org/document
/8361343 Published at 2018 IEEE 15th International Conference on Networking, Sensing
and Control (ICNSC). We are going to use Random Forest I from the paper . ** To write
bagging , how it helps in lower variance , why not pruning etc. **

Algorithm
• Creating Tree

– Step 1 : Bootstrap Random Samples of size M from the data
– Step 2 : Ramdomly select n number of features , where n should be

√(no.offeatures) as recommended by Debian
– Step 3 : Create a Root node , With this subset of data that we have produced in

from Step 1 and Step 2
– Step 4 : Classify the data in different classes and calculate their average (usually

mean) usuall called centers
– Step 5 : Calculate the Manhattan Distance of data row with centers
– Step 6 : Create two child node, attach data row to left child if distance is smaller

to class 0 center and vie versa
– Step 7 : Repeat Step 2-6 until nodes contain data from one class

• Creating Forest
– Create araay of k number of trees
– Prediction

∗ define threshold t
∗ if the number of of trees giving decision “fraud” is greater than t , then

classify the transaction as fraud
∗ otherwise define it as “non - fraud”

Objective
We have a obstacle in our way, we know we take majority vote to decide whether the trans-
action is fraudulent or not and in the binary case the decision threshold is often 0.5 means

5

https://ieeexplore.ieee.org/document/8361343
https://ieeexplore.ieee.org/document/8361343

we classify a transaction as fraudulent when in a forest more than half of the trees gives
decision that the transaction is fraudulent but it is not always true , as in our case the the
data is unbalanced and it is most often in credit card fraud detection. This is since most of
the transactions are not fraud and the proportion of fraud is very less as it is in our case.
So our objective is to decided a threshold for our data , and interpret it why is it so ? .
Another objective is to find the optimal number of trees for the decision and the numbers
of bootstrap samples. One other objective is to prove that Accuracy is useless in imbalance
data.

Performance Measures
We are gonna make a confusion matrix , confusion matrix is 2 × 2 matrix contains different
value , which we will be used to calculate various performance measures such as accuracy ,
F-measure , Precision and recall. Confusion Matrix is given by

Confusion Matrix Fraud Non-Fraud
Predicted Fraud TP FP
Predicted Non-Fraud FN TN

• TP : True Positive is the number of cases in which we predicted positive and its true
• TN : True Negative is the number of cases in which we predicted negative and its true
• FP : False Positive also known as type I error,in this case we predict positive and its

false
• FN : False Negative also known as type II error , in this case we predict negative and

its false

Now Various Measure can be calculated by

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2𝑇 𝑃
2𝑇 𝑃+𝐹𝑃+𝐹𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃

𝑇 𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃+𝐹𝑁 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃+𝑇 𝑁

𝑇 𝑃+𝑇 𝑁+𝐹𝑃+𝐹𝑁

Accuracy Paradox
Accuracy Paradox is a glitch in the metric of accuracy, it happens mostly in imbalanced
data as in our case , as accuracy is not a good measure for type of data , it shows that the
accuracy is good , but actually performance is very bad we are gonna represent this in our
conclusion , we also gonna plot this

** We are gonna us F-measure as our primary Performance Metric **

Data Preprocessing
We are gonna use two data processing , that is

6

• Missing Value Ratio
• Low Variance Filter

Missing Value Ration
In missing value we generally find the ration of missing value in the features , we just sum
up the missing values and divide by the length of the column and then multiply it by 100 to
get the percentage of missing value in that column
for col in eachcol(data)
a=sum(ismissing.(col))/length(col)
println("$a missing data ")

end

0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data
0.0 missing data

7

So we can see we have not any Missing Data

Why not Heat Map and Scaling
Our data is quite straight forward most of the data is PCA , so there is minmmum correlation
in the data , and scaling have not any benifit in random forest , it is gonna time waste .

Code
We are going to divide our code part in three section , Functions which contains the
functions we are going to create to run the execution smoothly, Execution Execution part
to train the model and call the functions on the data and Visualization

Functions
We are going to create functions , those are

(1) rediv()

It is a function to import CSV format data to julia , and further divide the data set in test ,
train and validation set . It returns validation and train set whereas it set test set as global
so that it can be accessed from any part of the code
function rediv()
data= CSV.read("creditcard.csv") # Importing data
x=rand(nrow(data)) ; # Generating Random variable
y=x.> 0.8; # Setting Boolean Random variable
test_set=data[y,:]; # Extracting Test set
train_set=data[.!y,:];
z=rand(nrow(train_set)).>0.7;
val_set=train_set[z,:]; # Extracting Train Set
train_set=train_set[.!z,:]; # Extracting Validation Set
CSV.write("train_set.csv",train_set)
CSV.write("val_set.csv",val_set)
global test_set
return train_set , val_set

end

(2) sampler()

sampler() function takes three inputs data , n and i. Its main function is to divide the
data set by rows when i = 1 and by columns when i =0 and n define the number of rows or
columns to be extracted.
function sampler(x,n,i)

if i==1 # for sampling row
x[shuffle(1:nrow(x))[1:n], :]

8

elseif i==0 #for sampling columns
x[:, shuffle(1:ncol(x))[1:n]]

else
return print("i should be 1 or 0")

end
end

(3) classifier()

It takes two arguments first one is data and second on is a bool argument when true returns
subset of the first argument whose class is true means only fraud transaction and when false
it returns only non-fraud transaction
function classifier(x,t::Bool) #divide the dataframe x according to different class (in our case it is binary)

a=(x[:,1].==t)
return x[a,:]

end

(4) center()

Now center function , will find center of the data (in our case it is mean of coloumn) ,of given
class , so our function will take data set and classify the data according to a bool input using
our classifier() that we just created , then calculate mean of the data set returned by
our classifier function , and then it will truncate the first column average because we don’t
need mean of the feature “class” fo further use
function center(x,class::Bool)

classified=classifier(x,class)
colmean=[sum(col)/length(col) for col = eachcol(classified)]
return colmean[2:ncol(x)]

end

(5) distance()

This distance function will find the distance between the data and center
function distance(center,x)

k=[]
for i in 1:nrow(x)

a=convert(Array{Float64,1},x[i,:])
a=a[2:ncol(x)]
j=sum(abs.((a-center)))
k=push!(k,j)

end
return k

end

(6) node()

9

now defining node() which will create node of the tree but before that we need to define a
structure called node using struct command that contains names of the coloumns selected
randomly , center and the data
struct rnode

symbol::Array{Symbol,1}
centre
data

end

Now defining the node function
function node(x)

y =x[:,1] #target variable
l =x[:,2:ncol(x)] #feature
m = floor(sqrt(ncol(l))) #the number of fetures to be randomly taken
m = convert(Int64,m) #converting number on features in integer variable
j = (sampler(l,m,0)) # Sampling m coloumns
data = hcat(y,j) #concating target variable with feature variable
center0 = center(data,false) #calculating center for the data having class 0
center1 = center(data,true) #calculating center for the data having class 1
dist0 = distance(center0,data) #calculating distance of center 0 from data
dist1 = distance(center1,data) #calculating distance of center 1 from data
data0 = x[dist0 .<= dist1,:]
data1 = x[dist0 .> dist1,:]
k=rnode(names(j),[center0,center1],[data0,data1])
return k

end

(7) tree()

Now we will create tree() function but before that we need to define the strucure tree which
is just a nested loop
struct rtree

symbol::Array{Symbol,1}
center
data

end

now defining our tree function
function tree(y)

k=node(y)
datum1=k.data[2] #extracting the data which is nearer to class 1
datum0=k.data[1]
if sum(datum1[:,1]) == length(datum1[:,1]) && sum(datum0[:,1]) == 0

return rtree(k.symbol,k.center,[nothing,nothing])

10

elseif sum(datum1[:,1]) == length(datum1[:,1]) && sum(datum0[:,1]) != 0
return rtree(k.symbol,k.center,[tree(datum0),nothing])

elseif sum(datum0[:,1]) == 0 && sum(datum1[:,1]) != length(datum1[:,1])
return rtree(k.symbol,k.center,[nothing,tree(datum1)])

else
return rtree(k.symbol,k.center,[tree(datum0),tree(datum1)])

end
end

(8) forest()

Now our function forest is just an array of tree trained different bootstrapped sample rows
from the train set
function forest(x,n,l)

y=deepcopy(x)
x is dataset
n is no. of samples for each tree
l is no. of tree
forest=[]
for i in 1:l

data = sampler(y,n,1)
trained_tree= tree(data)
push!(forest,trained_tree)

end
return forest

end

(9) treepredict()

Now treepredict function will predict a dataset and will attach a column to the dataset
named class , that represent the dataset is fraud or not a fraud , it will take trained model
a tree as an input and a dataframe , then it will start dividing dataset unless nothing is
observed at the tree end then it will return that dataframe at the end with a class coloumn
with value equal to 1 if it prunned at right side of the node and if nothing is observed at the
left end it will return class 0 .
function treepredict(atree,test)

d0=sum.(eachrow(abs.((convert(Matrix,test[:,atree.symbol])).- (atree.center[1])')))
d1=sum.(eachrow(abs.((convert(Matrix,test[:,atree.symbol])).- (atree.center[2])')))
a=(d0.<d1)
b= (.!a)
if atree.data[1]==nothing && atree.data[2]!=nothing

return vcat(select!(insertcols!(test[a,:],1,:Class=>repeat([0],nrow(test[a,:]))),[:INDEX,:Class]),treepredict(atree.data[2],test[b,:]))
elseif atree.data[2]==nothing && atree.data[1]!=nothing

return vcat(select!(insertcols!(test[b,:],1,:Class=>repeat([1],nrow(test[b,:]))),[:INDEX,:Class]),treepredict(atree.data[1],test[a,:]))
elseif atree.data[2]==nothing && atree.data[1]==nothing

11

return select!(vcat(insertcols!(test[a,:],1,:Class=>repeat([0],nrow(test[a,:]))),insertcols!(test[b,:],1,:Class=>repeat([1],nrow(test[b,:])))),[:INDEX,:Class])
else

return vcat(treepredict(atree.data[1],test[a,:]),treepredict(atree.data[2],test[b,:]))
end

end

(10) sort_pred()

: There is a problem with our treepredict() function , it returns classified dataset and it
returns ransomly so we observe shuffled rows so thats why this function will attach a column
named * index * and then it will run treepredict() function and lastly sort the return from
the treepredict function according to index coloumn then remove index function and return.
function sort_pred(atree,test)

test1=deepcopy(test)
insertcols!(test1,1,:INDEX=>1:nrow(test))
return select!(sort!(treepredict(atree,test1),:INDEX),Not(:INDEX))

end

(11) forest_pred()

Now forest_pred() will return a dataframe, with a specified number of coloumn that is to
the number of tree in a forest that it will take as input , where each coloumn is a decision
of a tree
function forest_pred(forest,test)

a=DataFrame()
for i in forest

a=hcat(a,sort_pred(i,test),makeunique=true)
end
return a

end

Execution
In this part we will use the functions to train the data and different measure such as

• Precision
• Recall
• Accuracy
• f-measure

Now let us use rediv() to get our data set ready
train_set , val_set = rediv()
a = reverse(nrow(train_set):-1000:1000) # number of samples to train
b = 100 # maximum number of tree to train

12

Now let us take a look at our train_set, test_set and val_set
print(train_set)
print(test_set)
print(val_set)

159322×31 DataFrame. Omitted printing of 25 columns
� Row � Class � Time � V1 � V2 � V3 � V4 �
� � Int64 � Float64 � Float64 � Float64 � Float64 � Float64 �
���
� 1 � 0 � 0.0 � -1.35981 � -0.0727812 � 2.53635 � 1.37816 �
� 2 � 0 � 10.0 � 1.44904 � -1.17634 � 0.91386 � -1.37567 �
� 3 � 0 � 10.0 � 0.384978 � 0.616109 � -0.8743 � -0.0940186 �
� 4 � 0 � 11.0 � 1.06937 � 0.287722 � 0.828613 � 2.71252 �
� 5 � 0 � 12.0 � -2.79185 � -0.327771 � 1.64175 � 1.76747 �
� 6 � 0 � 12.0 � -0.752417 � 0.345485 � 2.05732 � -1.46864 �
� 7 � 0 � 12.0 � 1.10322 � -0.0402962 � 1.26733 � 1.28909 �
�
� 159315 � 0 � 172780.0 � 1.88485 � -0.14354 � -0.999943 � 1.50677 �
� 159316 � 0 � 172782.0 � -0.241923 � 0.712247 � 0.399806 � -0.463406 �
� 159317 � 0 � 172782.0 � 0.219529 � 0.881246 � -0.635891 � 0.960928 �
� 159318 � 0 � 172783.0 � -1.77513 � -0.0042354 � 1.18979 � 0.331096 �
� 159319 � 0 � 172784.0 � 2.03956 � -0.175233 � -1.19683 � 0.23458 �
� 159320 � 0 � 172785.0 � 0.120316 � 0.931005 � -0.546012 � -0.745097 �
� 159321 � 0 � 172786.0 � -11.8811 � 10.0718 � -9.83478 � -2.06666 �
� 159322 � 0 � 172788.0 � 1.91957 � -0.301254 � -3.24964 � -0.557828 �

56913×32 DataFrame. Omitted printing of 27 columns
� Row � predicted_class � Given_Class � Time � V1 � V2 �
� � Bool � Int64 � Float64 � Float64 � Float64 �
���
� 1 � 0 � 0 � 0.0 � 1.19186 � 0.266151 �
� 2 � 0 � 0 � 1.0 � -1.35835 � -1.34016 �
� 3 � 0 � 0 � 1.0 � -0.966272 � -0.185226 �
� 4 � 0 � 0 � 2.0 � -1.15823 � 0.877737 �
� 5 � 0 � 0 � 2.0 � -0.425966 � 0.960523 �
� 6 � 0 � 0 � 7.0 � -0.894286 � 0.286157 �
� 7 � 0 � 0 � 10.0 � 1.25 � -1.22164 �
�
� 56906 � 0 � 0 � 172759.0 � -0.822731 � 1.27014 �
� 56907 � 0 � 0 � 172762.0 � 1.95555 � -0.724606 �
� 56908 � 0 � 0 � 172764.0 � 2.07914 � -0.0287234 �
� 56909 � 0 � 0 � 172766.0 � 1.97518 � -0.616244 �
� 56910 � 0 � 0 � 172768.0 � -0.669662 � 0.923769 �
� 56911 � 0 � 0 � 172774.0 � -0.724123 � 1.48522 �
� 56912 � 0 � 0 � 172777.0 � -1.26658 � -0.400461 �

13

� 56913 � 0 � 0 � 172787.0 � -0.732789 � -0.0550805 �

68572×31 DataFrame. Omitted printing of 25 columns
� Row � Class � Time � V1 � V2 � V3 � V4 �
� � Int64 � Float64 � Float64 � Float64 � Float64 � Float64 �
���
� 1 � 0 � 4.0 � 1.22966 � 0.141004 � 0.0453708 � 1.20261 �
� 2 � 0 � 7.0 � -0.644269 � 1.41796 � 1.07438 � -0.492199 �
� 3 � 0 � 9.0 � -0.338262 � 1.11959 � 1.04437 � -0.222187 �
� 4 � 0 � 13.0 � -0.436905 � 0.918966 � 0.924591 � -0.727219 �
� 5 � 0 � 15.0 � 1.49294 � -1.02935 � 0.454795 � -1.43803 �
� 6 � 0 � 22.0 � -1.94653 � -0.0449005 � -0.40557 � -1.01306 �
� 7 � 0 � 26.0 � -0.529912 � 0.873892 � 1.34725 � 0.145457 �
�
� 68565 � 0 � 172768.0 � -2.07617 � 2.14224 � -2.5227 � -1.88806 �
� 68566 � 0 � 172769.0 � -1.02972 � -1.11067 � -0.636179 � -0.840816 �
� 68567 � 0 � 172770.0 � 2.00742 � -0.280235 � -0.208113 � 0.335261 �
� 68568 � 0 � 172770.0 � -0.446951 � 1.30221 � -0.168583 � 0.981577 �
� 68569 � 0 � 172771.0 � -0.515513 � 0.97195 � -1.01458 � -0.677037 �
� 68570 � 0 � 172774.0 � -0.863506 � 0.874701 � 0.420358 � -0.530365 �
� 68571 � 0 � 172788.0 � -0.24044 � 0.530483 � 0.70251 � 0.689799 �
� 68572 � 0 � 172792.0 � -0.533413 � -0.189733 � 0.703337 � -0.506271 �

Now let us train the model , we are going to Threads.@threads for the for loop so that we
can use multiple threads at the same time for faster ,

Let us understand our jungle array it is a 2 dimensional matrix , we can visualize it as a
a rectangle which consist very small rectangles, which is our single forest, and as we move
from top right the number of tree starts increasing and as we move down number samples
starts in increasing so as we move down or right computational barrier starts increasing as
in this figure

14

jungle = Array{Any}(undef, length(a))
Threads.@threads for i in shuffle(1:length(a))

jungle[i]=forest(train_set,a[i],b)
end

Now let us store the row number at which our validation set have class 1 that is fraud and 0
that is non-fraud transaction , and further remove the coloumn class from the validation set
Class1_index=(1:nrow(val_set))[(val_set[:,1].==1)];
Class0_index=(1:nrow(val_set))[(val_set[:,1].==0)];
select!(val_set,Not(:Class))

Now let us predict the transaction in our validation data sets, here jungle_pred is a four
dimensional array of which first dimension is number of samples in a forest , that is equal
to the number of transaction in train set and further repeatedly reducing by 1000 , just for
example let us say there are 13200 transaction in train set then first forest is trained with
13200 transaction , then 12200 , then 11200 and go on , while the second dimension represent
the number of tree which starts from 100 go to 1 , third argument is threshold after hoe
much percent of the tree we assume it is fraud the thresholds are 0.1 ,0.2 ,0.3, 0.4, 0.5, 0.6
, 0.7 , 0.8 , 0.9 ,1.0 and the last argument is prediction that in boolean where 1 represents
fraud and 0 represents non-fraudulent transactions.
jungle_pred = BitArray(undef, length(a), b,10,nrow(val_set));
nt = Array{Array{Int8}}(undef, length(a),b)
Threads.@threads for i in shuffle(1:length(a))

pre = forest_pred(jungle[i],val_set)
for j in b:-1:1

l=(1:b)[shuffle(1:j)]
nt[i,j]=l
suf = pre[:,l]
for k in 1:10

jungle_pred[i,j,k,:]= ((sum(eachcol(suf))/ncol(suf)) .> k*0.1)
end

end
end

Now our jungle_pred array contains prediction of about 159901 forest which consist of
8029500 trees , now sice we have done prediction let us calculate indicators such as

• True Positive (TP) : Means the actual class is fraud and we have predicted class fraud
given by jungle_ind[:,:,:,1]

• True Negative (TN) : Means the actual class is non-fraud and we have predicted class
non-fraud given by jungle_ind[:,:,:,4]

• False Positive(FP) : Means prediction is fraud but actually the transaction is not fraud
jungle_ind[:,:,:,3]

• False Negative(FN) : Means prediction is non fraud but actually it is a fraud
jungle_ind[:,:,:,2]

15

The code for calculating indicators are
jungle_ind=zeros(Int64 , length(a), b,10,4);

for i in 1:length(a)
for j in 1:b
for k in 1:10
Threads.@threads for m in Class1_index

if jungle_pred[i,j,k,m]==1
jungle_ind[i,j,k,1]=jungle_ind[i,j,k,1]+1

elseif jungle_pred[i,j,k,m]==0
jungle_ind[i,j,k,3]=jungle_ind[i,j,k,3]+1

end
end

Threads.@threads for n in Class0_index
if jungle_pred[i,j,k,n]==1
jungle_ind[i,j,k,2]=jungle_ind[i,j,k,2]+1

elseif jungle_pred[i,j,k,n]==0
jungle_ind[i,j,k,4]=jungle_ind[i,j,k,4]+1

end
end

end
end

end

Now We must Calculate Various Measure , such as precision , accuracy, fmeasure , recall
measure=zeros(Float64 , length(a), b,10,4);

Threads.@threads for i in 1:length(a)
for j in 1:b
for k in 1:10
if all(jungle_ind[i,j,k,1] .== 0)
measure[i,j,k,1]=0
measure[i,j,k,2]=0

else
measure[i,j,k,1]=jungle_ind[i,j,k,1]/(jungle_ind[i,j,k,1]+jungle_ind[i,j,k,2])
measure[i,j,k,2]=jungle_ind[i,j,k,1]/(jungle_ind[i,j,k,1]+jungle_ind[i,j,k,3])

end
if all(jungle_ind[i,j,k,1]+jungle_ind[i,j,k,4] .== 0)
measure[i,j,k,3]=0
else

measure[i,j,k,3]=(jungle_ind[i,j,k,1]+jungle_ind[i,j,k,4])/(jungle_ind[i,j,k,1]+jungle_ind[i,j,k,2]+jungle_ind[i,j,k,3]+jungle_ind[i,j,k,4])
end
if measure[i,j,k,1]*measure[i,j,k,2]==0
measure[i,j,k,4]=0

16

else
measure[i,j,k,4]=(2*measure[i,j,k,1]*measure[i,j,k,2])/(measure[i,j,k,1]+measure[i,j,k,2])
end

end
end
end

Now storing measure in a dataframe
df = DataFrame(Sample = Int64[], Tree = Int64[],Threshold=Float64[], Precission=Float64[], Recall=Float64[], Accuracy=Float64[],Fmeasure=Float64[])

for i in 1:length(a)
for j in 1:b

for k in 1:10
push!(df, [a[i] j k*0.1 measure[i,j,k,1] measure[i,j,k,2] measure[i,j,k,3] measure[i,j,k,4]])

end
end

end
CSV.write("measures.csv",df)

Now let us take a look at our measure dataframe
print(measures)

159000×7 DataFrame. Omitted printing of 1 columns
� Row � Sample � Tree � Threshold � Precission � Recall � Accuracy �
� � Int64 � Int64 � Float64 � Float64 � Float64 � Float64 �
��
� 1 � 1322 � 1 � 0.1 � 0.860215 � 0.714286 � 0.999146 �
� 2 � 1322 � 1 � 0.2 � 0.860215 � 0.714286 � 0.998863 �
� 3 � 1322 � 1 � 0.3 � 0.857143 � 0.709091 � 0.998772 �
� 4 � 1322 � 1 � 0.4 � 0.857143 � 0.715596 � 0.99894 �
� 5 � 1322 � 1 � 0.5 � 0.858696 � 0.711712 � 0.998767 �
� 6 � 1322 � 1 � 0.6 � 0.857143 � 0.709091 � 0.998772 �
� 7 � 1322 � 1 � 0.7 � 0.850575 � 0.698113 � 0.998763 �
�
� 158993 � 159322 � 100 � 0.3 � 0.967742 � 0.810811 � 0.999441 �
� 158994 � 159322 � 100 � 0.4 � 0.967391 � 0.801802 � 0.999319 �
� 158995 � 159322 � 100 � 0.5 � 0.978261 � 0.803571 � 0.999344 �
� 158996 � 159322 � 100 � 0.6 � 0.977528 � 0.783784 � 0.999282 �
� 158997 � 159322 � 100 � 0.7 � 0.974684 � 0.693694 � 0.999018 �
� 158998 � 159322 � 100 � 0.8 � 1.0 � 0.616071 � 0.999076 �
� 158999 � 159322 � 100 � 0.9 � 1.0 � 0.5 � 0.998595 �
� 159000 � 159322 � 100 � 1.0 � 0.0 � 0.0 � 0.997307 �

Now we have to find maximum F-measure so we will use findmax() function to get where
the f-measure is highest

17

findmax(measures)

(0.898989898989899, 132713)

So 132713 row , gives the maximum f-measure let us take a look at it
measures[132713,:]

DataFrameRow. Omitted printing of 1 columns
� Row � Sample � Tree � Threshold � Precission � Recall � Accuracy �
� � Int64 � Int64 � Float64 � Float64 � Float64 � Float64 �
��
� 132713 � 133322 � 72 � 0.3 � 0.967391 � 0.839623 � 0.999539 �

So we get out metrics as follows

Metrics & Settings Observed
Sample Size 132719
No. of Tree 72
Threshold 0.3
Precision 0.967391 = 97%
Recall 0.839623 = 84%
Accuracy 0.999539 = 100%
F-Measure 0.898989 = 90%

Now let us predict for the sample size 132719 , with 72 tree and threshold 0.3
rename!(test_set,:Class=>:Given_Class)
prediction = forest_pred(jungle[cartesian[1]],test_set)[:,nt[cartesian[1],cartesian[2]]]
prediction_forest = sum(eachcol(absd))/ncol(absd)
res=(absd .> cartesian[3]*0.1)
insertcols!(test_set,1,:predicted_class=>res)
Class1_index=(1:nrow(test_set))[(test_set[:,3].==1)];
Class0_index=(1:nrow(test_set))[(test_set[:,3].==0)];
TP=sum(test_set[Class1_index,2].==1)
TN=sum(test_set[Class0_index,2].==0)
FP=sum(test_set[Class1_index,2].==0)
FN=sum(test_set[Class0_index,2].==1)
println("True Positive = $TP , True Negative = $TN , False Positive = $FP , False Negative = $FN")

True Positive = 83 , True Negative = 56800 , False Positive = 24 , False Negative = 6

So Now We can Calculate Confusion Matrix with this result

Confusion Matrix Fraud Non-Fraud
Predicted Fraud 83 24

18

Confusion Matrix Fraud Non-Fraud
Predicted Non-Fraud 6 56800

Now let us calculate Performance Metrics

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁 = 83 + 56800

83 + 56800 + 24 + 6 = 56883
56913 = 0.99947 ≈ 100%

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 = 83

83 + 6 = 83
89 = 0.96629 ≈ 97%

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 = 83

83 + 24 = 83
107 = 0.7757 ≈ 78%

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2𝑇 𝑃
2𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁 = 83 × 2

83 × 2 + 24 + 6 = 166
249 = 0.8469 ≈ 83%

Visualization
Sanddance

Let us talk of threshold , means the percentage of trees giving decision in favour of fraud ,
for a forest so that we conclude that it gives us more accurate measures such as f-measure,
usually threshold is equal to 0.5 that mean if there are n tree in a forest and if more than
n/2 tree gives decision for a transaction to be fraudulent we predict that transaction as
fraudulent but in the case of unbalance data it is no more 0.5 so we are gonna analyze that
using sanddance

19

We can look at the output of sanddance , in this every facet is a threshold , and x-axis is a
number of trees and y-axis represents sample and the color represent f-measure we can see
its threshold is more greener at threshold 0.3-0.4 , where as the number of tree is increasing
the f-measure is also improving

ggplot2

Now let us use R , first of all import data
measures=read.csv("measures.csv")

Now let us add a column called coverage that is multiplication of the columns Sample and
tree
coverage=(measures[,1]*measures[,2]);
measures=add_column(measures,coverage,.after=2);
knitr::kable(head(measures,25),"latex",booktabs=T)

Sample Tree coverage Threshold Precission Recall Accuracy Fmeasure
1322 1 1322 0.1 0.8602151 0.7142857 0.9991462 0.7804878
1322 1 1322 0.2 0.8602151 0.7142857 0.9988626 0.7804878
1322 1 1322 0.3 0.8571429 0.7090909 0.9987720 0.7761194
1322 1 1322 0.4 0.8571429 0.7155963 0.9989402 0.7800000
1322 1 1322 0.5 0.8586957 0.7117117 0.9987673 0.7783251
1322 1 1322 0.6 0.8571429 0.7090909 0.9987719 0.7761194
1322 1 1322 0.7 0.8505747 0.6981132 0.9987625 0.7668394
1322 1 1322 0.8 0.8488372 0.7019231 0.9988799 0.7684211
1322 1 1322 0.9 0.8522727 0.7009346 0.9987623 0.7692308
1322 1 1322 1.0 0.0000000 0.0000000 0.9971050 0.0000000
1322 2 2644 0.1 0.7920792 0.7142857 0.9985537 0.7511737
1322 2 2644 0.2 0.7789474 0.6981132 0.9985418 0.7363184
1322 2 2644 0.3 0.7857143 0.7129630 0.9985852 0.7475728
1322 2 2644 0.4 0.7920792 0.7142857 0.9985598 0.7511737
1322 2 2644 0.5 0.6842105 0.1287129 0.9974760 0.2166667
1322 2 2644 0.6 0.6842105 0.1300000 0.9974512 0.2184874
1322 2 2644 0.7 0.6842105 0.1203704 0.9979060 0.2047244
1322 2 2644 0.8 0.6842105 0.1192661 0.9976007 0.2031250
1322 2 2644 0.9 0.6842105 0.1171171 0.9971412 0.2000000
1322 2 2644 1.0 0.0000000 0.0000000 0.9969011 0.0000000
1322 3 3966 0.1 0.3153846 0.7454545 0.9943343 0.4432432
1322 3 3966 0.2 0.3181818 0.7500000 0.9942794 0.4468085
1322 3 3966 0.3 0.3193916 0.7500000 0.9937681 0.4480000
1322 3 3966 0.4 0.8941176 0.6846847 0.9990453 0.7755102
1322 3 3966 0.5 0.8953488 0.6875000 0.9990017 0.7777778

20

Now we need to plot coverage vs. Fmeasure , and for smoothing going to use lowess, with
grouping according to the threshold so we can get curve for every threshold
ggplot(measures,aes(x=coverage,y=Fmeasure,group=Threshold,

colour=factor(Threshold)))+geom_smooth(se=0,method="loess")

`geom_smooth()` using formula 'y ~ x'

0.00

0.25

0.50

0.75

0.0e+00 5.0e+06 1.0e+07 1.5e+07
coverage

F
m

ea
su

re

factor(Threshold)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We can draw four conclusions from it

1. Threshold for imbalanced dataset is not 0.5, as we can see Fmeasure is highest for 0.3
, whereas for 0.5 performance is not that good

2. At certain coverage there is no much benefit in increasing coverage , that is product of
trees and sample size , means after certain level the performance will become constant
as we can see for any threshold after certain coverage the slope starts to becoming
parallel to x-axis

3. Performance here F-measure is proportional to coverage i.e

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∝ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∝ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 × 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒

Intuition We can see in the graph the curve somewhat looks like log curve as
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑙𝑜𝑔(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) + 𝑓(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

Where it looks like 𝑓(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is somehow maximum at 0.3 that means
𝑑

𝑑𝑥𝑓(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)|𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=0.3 ≈ 0

21

However it needs further investigation , to conclude something because we have predicted
on threshold 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 only we need high end computing
devices to conclude further so calculation can be done more precisely here we have take error
of 0.1 which is quite big.

Let us check Accuracy Paradox

ggplot(measures,aes(x=coverage,y=Accuracy,group=Threshold,
colour=factor(Threshold)))+geom_smooth(se=0,method="loess")

`geom_smooth()` using formula 'y ~ x'

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

0.0e+00 5.0e+06 1.0e+07 1.5e+07
coverage

A
cc

ur
ac

y

factor(Threshold)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We can conclude from here that accuracy is not a good measure fo imbalance data , as we
can see accuracy is higher in most of the cases whether it is not true

Now during fraud detection our main aim is to insure there must not be any transaction
which is actually fraud not detected by our model however this is to insure that true positive
is equal to the total positive , while reducing false negative , let us take a look of True
positive vs Coverage, first of all we will import or jungle_ind in R , then use ggplot
ind=read.csv("indicators.csv")
coverage=(ind[,1]*ind[,2]);
ind=add_column(ind,coverage,.after=2);
ggplot(ind,aes(x=coverage,y=TP,group=Threshold,

))+geom_smooth(se=0,method="loess",aes(color=Threshold))

`geom_smooth()` using formula 'y ~ x'

22

0

25

50

75

0.0e+00 5.0e+06 1.0e+07 1.5e+07
coverage

T
P

0.25

0.50

0.75

1.00
Threshold

We can see the True Positive maximum for threshold 0 , means it can successfully classify
each and ever fraudulent transaction.

Conclusion & Result
1. Fmeasure is highest if we classify a transaction fraudulent when 30 to 40 percent of

the trees , which is quite different for regular random forest model
2. Number of trees , and sample have effect on the performance of forest but after certain

limit there is not any benefit in increasing any of them
3. When Performance is constant Number of tree is inversely proportional to Sample size
4. Accuracy is not good metric for imbalance data

23

	Introduction
	Technology
	Julia
	Sanddance
	ggplot2

	Data
	Procedure
	Algorithm

	Objective
	Performance Measures
	Accuracy Paradox

	Data Preprocessing
	Missing Value Ration
	Why not Heat Map and Scaling

	Code
	Functions
	Execution
	Visualization
	Sanddance
	ggplot2
	Intuition

	Let us check Accuracy Paradox

	Conclusion & Result

